Discipline :MECHANICALENGG	Semester :3 rd	Name of the Teaching Faculty: OMPRAKASH KAR
Subject: ENGINEERING MATERIAL	No. of days/per week class allotted: 04	No. of Weeks:15
Week	Class Day	Theory / Practical Topics
1 ST	1 ST	Material classification into ferrous and non ferrous category and alloys
	2 ND	Material classification into ferrous and non ferrous category and alloys
	3 RD	Properties of Materials: Physical, Chemical and Mechanical Performance requirements
	4 TH	Properties of Materials: Physical , Chemical and Mechanical Performance requirements
2 ND	1 ST	Material reliability and safety
	2 ND	Characteristics and application of ferrous materials
	3 RD	Classification, composition and application of low carbon steel, medium carbon steel and High carbon steel
	4 TH	Alloy steel: Low alloy steel, high alloy steel, tool steel and stainless steel
3 RD	1 ST	Tool steel: Effect of various alloying elements such as Cr, Mn, Ni, V, Mo,
	2 ND	Tool steel: Effect of various alloying elements such as Cr, Mn, Ni, V, Mo,
	3 RD	Concept of phase diagram and cooling curves
	4 TH	Concept of phase diagram and cooling curves
4 TH	1 ST	Concept of phase diagram and cooling curves
	2 ND	Features of Iron-Carbon diagram with salient micro- constituents of Iron and Steel
	3 RD	Features of Iron-Carbon diagram with salient micro- constituents of Iron and Steel
	4 TH	Features of Iron-Carbon diagram with salient micro- constituents of Iron and Steel
5 TH	1 ST	Features of Iron-Carbon diagram with salient micro- constituents of Iron and Steel
	2 ND	Features of Iron-Carbon diagram with salient micro- constituents of Iron and Steel
	3rd	Crystal defines, classification of crystals, ideal crystal and crystal imperfections
	4 TH	Crystal defines, classification of crystals, ideal crystal and crystal imperfections
6 TH	1 ST	Classification of imperfection: Point defects, line defects, surface defects and volume defects
	2 ND	Classification of imperfection: Point defects, line defects
		surface defects and volume defects
	3 RD	Types and causes of point defects: Vacancies, Interstitials and

		impurities
	4 TH	Types and causes of line defects: Edge dislocation and screw
		dislocation
7 TH	1 ST	Effect of imperfection on material properties
	2 ND	Deformation by slip and twinning
	3 RD	Effect of deformation on material properties
	4 TH	Effect of deformation on material properties
8 TH	1 ST	Purpose of Heat treatment
	2 ND	Process of heat treatment: Annealing, normalizing,
		hardening,
		tampering, stress relieving measures
	3 RD	Process of heat treatment: Annealing, normalizing,
		hardening,
		tampering, stress relieving measures
	4 TH	Process of heat treatment: Annealing, normalizing,
		hardening,
OTH-	4 CT	tampering, stress relieving measures
9 ^{1H}	131	Surface hardening: Carburizing and Nitriding
	2 ND	Surface hardening: Carburizing and Nitriding
	3RD	Effect of heat treatment on properties of steel
10711	41H	Effect of heat treatment on properties of steel
10 ^{1H}	181	Hardenability of steel
	2 ND	Hardenability of steel
	3 RD	Aluminum alloys: Composition, property and usage of
		Duralmin, y- alloy.
	4 TH	Aluminum alloys: Composition, property and usage of
		Duralmin, y- alloy
11 ^{1H}	181	Aluminum alloys: Composition, property and usage of
		Duralmin, y- alloy
	2^{ND}	Copper alloys: Composition, property and usage of
		Copper-
		Aluminum, Copper-Tin, Babbit , Phosperous bronze,
	2RD	Drass, Copper- Nickel
	5	Copper alloys: Composition, property and usage of
		bronze brass
		Copper- Nickel
	4 TH	Predominating elements of lead alloys. Zinc alloys and
		Nickel
		alloys
12 TH	1 ST	Predominating elements of lead alloys, Zinc alloys and
		Nickel
		alloys
	2^{ND}	Low alloy materials like P-91, P-22 for power plants and other
		high temperature services. High alloy materials like stainless
		steel grades of duplex, super duplex materials etc.
	3 ^{KD}	Low alloy materials like P-91, P-22 for power plants and other
		steel grades of dupley, super dupley materials like stainless
	<u>⊿</u> TH	Low allow materials like D 01, D 22 for power plants and other
		high temperature services. High allow materials like stainless
		steel grades of duplex, super duplex materials etc.
		steel grades of duplex, super duplex materials etc.

13 TH	1 ST	Classification, composition, properties and uses of Copper base, Tin Base, Lead base, Cadmium base bearing materials
	2 ND	Classification, composition, properties and uses of Copper base, Tin Base, Lead base, Cadmium base bearing materials
	3 RD	Classification, composition, properties and uses of Copper
		base, Tin Base, Lead base, Cadmium base bearing materials
	4 TH	Classification, composition, properties and uses of Iron- base and Copper base spring material
14 TH	14 TH 1 ST	Classification, composition, properties and uses of Iron-base and Copper base spring material
	2 ND	Classification, composition, properties and uses of Iron- base and Copper base spring material
	3 RD	Properties and application of thermosetting and thermoplastic polymers
	4 TH	Properties and application of thermosetting and thermoplastic polymers
15TH	1 ST	Properties of elastomers
	2 ND	Classification, composition, properties and uses of particulate based and fiber reinforced composites
	3 RD	Classification, composition, properties and uses of particulate based and fiber reinforced composites
	4 TH	Classification and uses of ceramics

- 01. A Textbook of Material Science and Metallurgy, byO PKhanna,DhanpatRai
- 02. Engineering materials and MetallurgbyR KRajput,S.Chand
- 03. Material science & process, byS K Hazrachoudhry, Imdian BookDistrubuting

GOVERNMENT POLYTECHNIC JAGATSINGHPUR

MECHANICAL ENGINEERING DEPARTMENT LESSON PLAN

Discipline :-	Semester:-3 RD	Name of the Teaching Faculty
Mechanical		SHYAMA PRASAD SWAIN
Subject:-	No of Days/per	Week-15
Environmental	Week Class	
Studies	Allotted :-04	
Week	Class Day	Theory/ Practical Topics
	1 st	CHAPTER-1: The Multidisciplinary nature of environmental studies
		Introduction
1 st	2^{nd}	Definition, scope and importance.
	3 rd	Need for public awareness.
	4^{th}	CHAPTER-2: Natural Resources:
		Forest resources: Use and over-exploitation, deforestation, case studies,
2^{nd}	1^{st}	Timber extraction mining, dams and their effects on forests and tribal people.
	2 nd	Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dam's benefits and problems.
	3 rd	Mineral Resources: Use and exploitation,
	4 th	Environmental effects of extracting and using mineral resources.
	1^{st}	Food Resources: World food problems, changes caused by agriculture and over grazing
3 rd	2^{nd}	Effects of modern agriculture, fertilizers- pesticides problems, water logging, salinity
	3 rd	Energy Resources: Growing energy need
	4 th	Renewable and non-renewable energy sources, use of alternate energy sources, case studies.
	1^{st}	Land Resources: Land as a resource, land degradation, Landslides, soil erosion, and desertification.
	2 nd	Role of individual in conservation of natural resources, Equitable use of resources for sustainable life styles.
4 th	3 rd	CHAPTER-3: Systems:
		Concept of an eco-system.
	4 th	Structure and function of an eco-system
	1 st	Producers, consumers, decomposers.
- th	2rd	Energy flow in the eco systems.
5"	3 rd	Ecological succession.
	4 ^{ui}	Food chains, food webs and ecological pyramids
	1	Introduction, types, characteristic features of eco system:
4	2 nd	structure and function of the following ecosystem: Forest ecosystem, Aquatic eco systems (ponds, streams, lakes, rivers, oceans, estuaries).
6 ^m	3 rd	CHAPTER-4: Biodiversity and it's Conservation: Introduction
	4 th	Definition: genetics, species and ecosystem diversity.

7 th	1 st	Biogeographically classification of India.
	2^{nd}	Value of biodiversity: consumptive use, productive use,
	3 rd	Value of biodiversity in social ethical, aesthetic and optin values.
	4 th	Biodiversity at global, national and local level.
	1 st	Threats to biodiversity: Habitats loss, poaching of wild life
	2^{nd}	Threats to biodiversity: man wildlife conflicts.
8 th	3 rd	CHAPTER-5: Environmental Pollution:
		Definition Causes, effects and control measures of:
	4 th	Air pollution.
	1 st	Water pollution
Oth	2^{nd}	Soil pollution
9	3 rd	Marine pollution
	4 th	Noise pollution.
	1^{st}	Thermal pollution
10 th	2^{nd}	Nuclear hazards.
10	3 rd	Solid waste Management: Causes
	4 th	Effects and control measures of urban and industrial wastes.
	1^{st}	Role of an individual in prevention of pollution.
	2^{nd}	Disaster management: Floods, earth quake, cyclone and landslides.
11 th	3 rd	CHAPTER-6: Social issues and the Environment:
	. eb	Form unsustainable to sustainable development.
	4 ^{ui}	Urban problems related to energy.
	I**	Water conservation, rain water harvesting, water shed management
1.2 th	2^{nd}	Resettlement and rehabilitation of people; its problems and concern
12	3 rd	Environmental ethics: issue and possible solutions
	4 th	Climate change, global warming, acid rain,
	1 st	Ozone layer depletion, nuclear accidents and holocaust, case studies.
1 oth	2^{nd}	Air (prevention and control of pollution) Act.
13-	3 rd	Water (prevention and control of pollution) Act.
	4 th	Public awareness.
	1 st	CHAPTER-7: Human population and the environment: introduction
1 4th	2^{nd}	Population growth and variation among nations.
14	3 rd	Population explosion- family welfare program.
	4 th	Environment and human health.
	1 st	Human rights.
1 cth	2^{nd}	Value education
15"	3 rd	Role of information technology in environment and human health
	4 th	Important question discussion

Discipline	Semester	Name of the Teaching Faculty: MUKESH KU. DALEI
:MECHANICAL	• 3rd	
ENGG		
Subject: Producti	No. of	No. of Weeks:15
5		
on Technology	days/per	
	week	
	class	
	allotted:0	
	4	
Week	Class	Theory / Practical Topics
	Day	
1 ST	1 ST	Extrusion: Definition & Classification
	2^{ND}	Explain direct, indirect and impact extrusion process.
	3 RD	Define rolling .Classify it.
	4 TH	Define rolling. Classify it.
2 ND	1 ST	Differentiate between cold rolling and hot rolling process
	2^{ND}	List the different types of rolling mills used in Rolling process
	3 RD	List the different types of rolling mills used in Rolling process
	4 TH	Define welding and classify various welding processes.
3 RD	1 ST	Define welding and classify various welding processes
	2 ND	Explain fluxes used in welding.
	3 RD	Explain Oxy-acetylene welding process.
	4 TH	Explain various types of flames used in Oxy-acetylene welding process.
4 TH	1 ST	Explain Arc welding process.
	2 ND	Specify arc welding electrodes.
	3 RD	Define resistance welding and classify it.
	4 TH	Define resistance welding and classify it.
5 TH	1 ST	Describe various resistance welding processes such as butt
		welding,spotwelding,flashwelding,projectionweldingandseamwelding
	2^{ND}	Describe various resistance welding processes such as butt
		welding, spotwelding, flashwelding, projection welding and seam welding.
	3 RD	Describe various resistance welding processes such as butt
		welding, spot welding, flash welding, projection welding andseam
		welding.
	4 TH	Explain TIG and MIG welding process
6 TH	1 ST	State different welding defects with causes and remedies
	2 ND	State different welding defects with causes and remedies
	3 RD	State different welding defects with causes and remedies
	4 TH	Define Casting and Classify the various Casting processes.
7 TH	1 ST	Define Casting and Classify the various Casting processes
	2 ND	Define Casting and Classify the various Casting processes
	3 RD	Explain the procedure of Sand mould casting.
	4 TH	Explain different types of molding sands with their composition and
		properties
8 TH	1 ST	Explain different types of molding sands with their composition and
		properties
	2 ND	Classify different pattern and state various pattern allowances
	3 RD	Classify different pattern and state various pattern allowances
	4 TH	Classify core.
9 TH	1 ST	Describe construction and working of

		cupola and crucible furnace
	2 ND	Describe construction and working of cupola and crucible furnace.
	3 RD	Explain die casting method.
	4 TH	Explain centrifugal casting such as true
		centrifugal
		casting, centrifuging with advantages, limitation
		andareaofapplication.
10 TH	1 ST	Explain centrifugal casting such as true
		centrifugal casting, centrifuging with
		advantages, limitation and areaof application.
	2^{ND}	Explainvariouscastingdefects with their causes
	3 RD	Explain various casting defects with their causes and remedies
	4 TH	Define powder metallurgy process.
11 TH	1 ST	Define powder metallurgy process.
	2 ND	State advantages of powder metallurgy technology technique
	3RD	Describe the methods of producing components by powder metallurgy
	5	technique
	4 TH	Describe the methods of producing components by powder metallurgy
		technique
12 TH	1 ST	Explain sintering.
	2 ND	Economics of powder metallurgy
	3RD	Describe PressWorks:blanking_piercing and trimming
	/TH	Describe Press Works: blanking, piercing and trimming.
		Describe Tress works. blanking ,preteing and trinning.
13 TH	1 ST	List various types of die and punch
	2ND	Evaluia simple. Compound & Decensorius dies
	2.12	Explain simple, Compound & Progressive dies
	3KD	Explain simple, Compound & Progressive dies
	4 TH	Describe the various advantages & disadvantages of above dies
14 TH	1 ST	Describe the various advantages & disadvantages of above dies
	2 ND	Define jigs and fixtures
	3 RD	State advantages of using jig sand fixtures
	4 TH	State the principle of locations
15TH	1 ST	Describe the methods of location with respect to 3-2-1 point location of
		rectangular jig
	2 ND	Describe the methods of location with respect to 3-2-1 point location of
		rectangular jig
	3"	List various types of jig and fixtures.
	4 TH	Lis tvarious types of jig and fixtures.

- 01. ProductionTechnology, Vol-I&IIbyO.P.Khanna,DhanpatRaiPublication
- 02. Workshoptechnology, Vol-I&II by B.SRaghuwanshi, DhanpatRai&Co
- 03. Manufacturing technology, Vol-&II byP.N.Rao,TMH
- 04. Manufacturingtechnology, Vol-I by P.C.Sharma, S.Chand

Discipline :MECHANICALE NGG	Semeste r :3 rd	Name of the Teaching Faculty: PRIYABRATA PANDA
Subject:STRENGT	No. of	No. of Weeks: 15
H OF	days/per	
MATEDIAI	week	
	class	
	allotted:	
	04	
Week	Class	Theory / Practical Topics
	Dav	
1 ST	1 ST	Types of load, stresses & strains,(Axial and tangential),
	2 ND	Hooke's law, Young's modulus, bulk modulus, modulus of rigidity,
	3 RD	Poisson's ratio, derive the relation between three elastic constants
	4 TH	Principle of super position, stresses in composite section
2 ND	1 ST	Temperature stress, determine the temperature stress in composite bar (single core)
	2 ND	Strain energy and resilience, Stress due to gradually applied, suddenly applied and impact load
	3 RD	Strain energy and resilience, Stress due to gradually applied, suddenly applied and impact load
	4 TH	Simple problems on above
3 RD	1 ST	Simple problems on above
	2 ND	Simple problems on above
	3 RD	Definition of hoop and longitudinal stress strain
	∕∕TH	Demittononoopandiongitudinaistiess,strain
	+	Definitionofhoopandlongitudinalstress,strain
4 ^{1H}	151	Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain
	2 ND	Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain
	3 RD	Computation of the change in length, diameter and volume
	4 TH	Simple problems on above
5 TH	1 ST	Simple problems on above
	2 ND	Simple problems on above
	3 RD	Determinationofnormalstress,shearstressandresultantstre ssonobliqueplane
	4 TH	Determination of normal stress, shear stress and resultant stress on oblique plane
6 TH	1 ST	Determination of normal stress, shear stress and resultant stress on oblique plane
	2 ND	Location of principal plane and computation of principal stress
	3 RD	Location of principal plane and computation of principal stress
	4 TH	Location of principal plane and computation of principal stress
7 TH	1 ST	Locationofprincipalplaneandcomputationofprincipalstressand Maximum
	2 ND	Locationof princinal planeand computation of principal stress and Maximum
	_	shear stress using Mohr's circle
	3 RD	Locationofprincipalplaneandcomputationofprincipalstressand Maximum
		shear stress using Mohr's circle
	4 TH	Locationofprincipalplaneandcomputationofprincipalstressand Maximum

		shear stress using Mohr's circle
8 TH	1 ST	Types of beam and load
	2^{ND}	Types of beam and load
	3 RD	Types of beam and load
	4 TH	ConceptsofShearforceandbendingmoment
9 TH	1 ST	ConceptsofShearforceandbendingmoment
	2 ND	ConceptsofShearforceandbendingmoment
	3KD	ShearForceandBendingmomentdiagramanditssalientfeaturesillustration
		in an
		cantilever beam, simply supported beam and
		overnangingbeamunderpointioadanduniformiydistributedi
	<u>⊿</u> TH	080 ShoarEarcoandBondingmomontdiagramanditesaliontfoaturosillustration
		in cantilever beam, simply supported beam and
		overhangingbeamunderpointloadanduniformlydistributedload
10 TH	1 ST	ShearForceandBendingmomentdiagramanditssalientfeaturesillustration
		in cantilever beam, simply supported beam and
		overhangingbeamunderpointloadanduniformlydistributedload
	2 ND	ShearForceandBendingmomentdiagramanditssalientfeaturesillustration
		in
		cantilever beam, simply supported beam and
		overhangingbeamunderpointloadanduniformlydistributedl
	app	oad
	3KD	Assumptions in the theory of bending,
	4^{TH}	Assumptions in the theory of bending,
11 TH	1 ST	Bendingequation, Momentofresistance, Section modulus & neutralaxis.
	2^{ND}	Bendingequation, Momentofresistance, Section modulus & neutralaxis.
	3 RD	Bendingequation, Momentofresistance, Section modulus & neutralaxis.
	4 TH	Solvesimpleproblems
12 TH	1 ST	Solvesimpleproblems
	2 ND	Solvesimpleproblems
	3 RD	Solvesimpleproblems
	4 TH	Solvesimpleproblems
12TH	1.ST	
15	151	Definecolumn
	2^{ND}	Axialload,Eccentricloadoncolumn
	3 RD	Directstresses, Bendingstresses, Maximum & Minimum stresses. Numeric
		al
	4711	problemson above.
	411	Directstresses,Bendingstresses,Maximum&Minimumstresses.Nu
1 / TH	1.ST	merical problemson above.
14***	151	BucklingloadcomputationusingEuler'sformula(noderivat
	2 ND	BucklingloadcomputationusingEuler'sformula(noderivat
		ion)inColumns withvariousendconditions
	3 RD	Assumption of puretorsion
	4 TH	Thetorsionequationforsolidandhollowcircularshaft
15TH	1 ST	Thetorsionequationforsolidandholloweireularshaft
13111	1	Theory some quanomors on canono wene charshalt

2 ND	Thetorsionequationforsolidandhollowcircularshaft
3 RD	Comparison between solid and hollow shaft subjected to pure torsion
4 TH	Comparison between solid and hollow shaft subjected to pure torsion

- 01. StrengthofMaterials, bySRamamrutham,DhanpatRai
- 02. StrengthofMaterialsbyRKRajput, S.Chand
- $03. \ Strength of Materials, by R.Skhurmi, \ , \ S.Chand$
- 04. StrengthofMaterials,byGHRyder, Mcmillonandco.Imtd
- 05. StrengthofMaterials by STimoshenkoandDH,TMH

ANTARYAMI BERA Mech. Engg. Dept.

Discipline :MECHANICALENGG	Semester : 3 rd	Name of the Teaching Faculty: SABYASACHI JAGANNATH MISHRA.
Subject:THERMAL	No. of	No. of Weeks: 15
ENGINEERING-I	days/per	
	week class	
	allotted:04	
Week	Class Day	Theory / Practical Topics
1 ST	1 ST	Thermodynamic Systems (closed, open, isolated) enthalpy, Internal energy and units of measurement).
	2 ND	Thermodynamic properties of a system (pressure, volume,
		temperature, entropy,
	3 RD	Thermodynamic properties of a system (pressure, volume,
		temperature, entropy,
- NID	4 TH	Intensive and extensive properties
2 ND	1 ST	Define thermodynamic processes, path, cycle , state, path function, point function
	2 ND	Define thermodynamic processes, path, cycle , state, path function, point function
	3 RD	Thermodynamic Equilibrium.
	4 TH	Quasi-static Process.
3 RD	1 ST	Conceptual explanation of energy and its sources
	2 ND	Work , heat and comparison between the two
	3 RD	Mechanical Equivalent of Heat.
	4 TH	Work transfer. Displacement work
4 TH	1 ST	State & explain Zeroth law of thermodynamics.
	2 ND	State & explain First law of thermodynamics.
	3 RD	Limitations of First law of thermodynamics
	4 TH	Application of First law of Thermodynamics (steady flow
		energy equation and its application to turbine and compressor)
5 TH	1 ST	Application of First law of Thermodynamics (steady flow
		energy equation and its application to turbine and compressor)
	2 ND	Second law of thermodynamics (Claucius& Kelvin Plank
		statements).
	3 RD	Second law of thermodynamics (Claucius& Kelvin Plank
		statements).
	4 TH	Application of second law in heat engine, heat pump, refrigerator & determination of efficiencies & $C \cap P$
6 TH	1 ST	Application of second law in heat engine heat nump, refrigerator
	1	& determination of efficiencies & C.O.P (solve simple numerical)
	2 ND	(solve simple numerical)
	3 RD	(solve simple numerical)
	4 TH	(solve simple numerical)
7 TH	1 ST	Laws of perfect gas:
		Boyle's law, Charle's law, Avogadro's law, Dalton's law of
		partial pressure, Guy lussac law, General gas equation,
		characteristic gas constant, Universal gas constant.
	2 ND	Laws of perfect gas:
		Boyle's law, Charle's law, Avogadro's law, Dalton's law of
		partial pressure, Guy lussac law, General gas equation,
		characteristic gas constant, Universal gas constant.

	3 RD	Explain specific heat of gas (Cp and Cv)
	4 TH	Relation between Cp&Cv
8 TH	1 ST	Enthalpy of a gas.
	2^{ND}	Work done during a non- flow process.
	3 RD	Application of first law of thermodynamics to various non flow
		process (Isothermal, Isobaric, Isentropic and polytrophic
	4.7.14	process)
OTH	4 ^{1H}	Solve simple problems on above.
9111		Solve simple problems on above.
	280	Free expansion & throttling process
	3КД	Explain & classify I.C engine.
	4	Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM.
10 TH	1 ST	Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed & RPM.
	2 ND	Explain the working principle of 2-stroke & 4- stroke engine C.L.
		& S.I engine
	3 RD	Explain the working principle of 2-stroke & 4- stroke engine C.I
		& S.I engine
	4 TH	Explain the working principle of 2-stroke & 4- stroke engine C.I
		& S.I engine
11 TH	1 ST	Differentiate between 2-stroke & 4- stroke engine C.I & S.I
		engine
	2^{ND}	Differentiate between 2-stroke & 4- stroke engine C.I & S.I
	• P.D.	engine
	3RD	Carnot cycle
	4^{TH}	Otto cycle
12 TH	1 ST	Diesel cycle.
	2 ND	Dual cycle
	3 RD	Solve simple numerical
	4 TH	Solve simple numerical
13 TH	1 ST	Solve simple numerical
	2 ND	Solve simple numerical
	- 3RD	Solve simple numerical
	<u>лтн</u>	Solve simple numerical
1 <i>A</i> TH	-+ 1 ST	
14	2ND	Define Fuel.
	2 ²	
	310	Application of different types of fuel.
	411	Application of different types of fuel.
15TH	1 ST	Heating values of fuel.
	2^{ND}	Quality of I.C engine fuels Octane number, Cetane number.
	3 RD	Quality of I.C engine fuels Octane number, Cetane number.
	4 TH	Quality of I.C engine fuels Octane number, Cetane number.

- 01. Thermal Engineering, byR.S.Khurmi,S.Chand
- 02. Thermal EngineeringbyA.R.Basu, DhanpatRai
- 03. Thermal Engineering, byA.S.Sarao, Satya Prakash
- $04. \ {\rm Engineering} \ {\rm Thermodynamics, by P.K. Nag, \ {\rm TMH} }$
- 05. Thermal Engineeringby Mahesh M Rathore, TMH

Sabyasachi Jagannath Mishra Lect. In Mechanical Engineering Govt. Polytechnic Jagatsinghpur.