GOVERNMENT POLYTECHNIC JAGATSINGHPUR

CHEMICAL ENGINEERING DEPARTMENT LESSON PLAN

Discipline :- CHEMICAL	Semester:-6 th	Name of the Teaching Faculty Dr. SUSHANTA KUMAR BEHERA
CHEMICAL		DF. SUSHANTA KUMAK DEHEKA
Subject:- Chemical Reaction Engineering and Catalysis Course Code:	No of Days/per Week Class Allotted :-04	Semester From:- January To:- May
TH 2		
Week	Class Day	Theory/ Practical Topics
	1 st	CHAPTER-1: CHEMICAL KINETICS
		Introduction
1 st	2 nd	Classification of chemical reaction.
	3 rd	Rate of reaction, rate constant.
	4 th	Elementary and non-elementary reaction.
2 nd	1 st	Molecularity and order of reaction.
	2 nd	Arrhenius equation.
	3 rd	Concept of activation energy.
	4 th	Half-life reaction.
	1 st	Solve problems to determination of order of reaction and activation energy.
	2 nd	CHAPTER-2: INTERPETATION OF BATCH REACTOR DATA
3 rd		Introduction to reactor.
	3 rd	Derivation of integrated rate equation for zero order reactions with
		Conversion vs time
	4 th	Derivation of integrated rate equation for zero order reactions concentration
	1 et	vs time and half-life of reaction.
4 th	1 st	Derivation of integrated rate equation for irreversible unimolecular first order
	2 nd	reaction with Conversion vs time and concentration vs time
	<u>2rd</u> 3 rd	Derivation for first order reaction for half-life reaction.
	<u>Jth</u>	Solve numerical based on first order reaction
	4	Derivation of integrated rate equation for irreversible bimolecular second order reaction with Conversion vs time and concentration vs time
	1 st	Derivation for second order reaction for half-life reaction.
5 th	2 nd	Solve numerical based on second order reaction
	3 rd	Methods of interpretation of Batch reactor data.
		Derivation of equation for constant volume batch reactor.
6 th	1 st	Elementary idea about auto-catalytic reaction, reversible reaction
	2 nd	Concepts of variable volume batch reactor.(no derivation)
	<u>3</u> rd	Solve numerical based on topics
	4 th	CHAPTER-3: CATALYSIS
	·	Introduction
7^{th}	1 st	Define and classify catalysis with example
	2 nd	Characteristics of catalytic reaction.

	3 rd	Concepts of catalyst Promoter, Inhibitors, Accelerators, carriers and their actions
	4 th	Catalytic poisoning.
8 th	1 st	Concepts of Autocatalysis, negative catalysis, enzyme catalysis.
-	2 nd	Concepts of Deactivation of catalysis,
	3 rd	Role of activation energy and catalysis
	4 th	Discuss theories of catalysis
9 th	1 st	Preparation of catalyst
	2^{nd}	CHAPTER-4: REACTORS
_	and	Introduction
	3 rd	General idea about batch reactor, semi batch reactor
	4 th	Construction and operation of Batch reactors
10 th	1 st	Derivation for Performance equation of Batch reactors
	2^{nd}	Solve numerical based on Batch reactors
	3 rd	Construction and operation of semi batch reactor
	4 th	Construction and operation continuous reactor or CSTR
11 th	1 st	Derivation for Performance equation of CSTR or MFR
	2 nd	Solve numerical based on CSTR
	3 rd	Construction and operation of Tubular Reactor or PFR
	4 th	Construction and operation of Fixed Bed Reactor
12 th	1^{st}	Derivation for Performance equation of PFR
	2^{nd}	Solve numerical based on PFR
	3 rd	Construction and operation of Fluidized bed Reactor
	4 th	Construction and operation of Spray column reactor
13 th	1 st	Construction and operation of Packed column Reactor
	2 nd	Construction and operation of Packed column Reactor
	3 rd	Space velocity, space-time, and residence time.
	4 th	Choice of a reactor and material of construction of reactor.
14 th	1 st	Optimum Reactor Design
	2 nd	CHAPTER-5: CHEMICAL EQUILIBRIUM
		Introduction of chemical kinetics
	3 rd	Reversible reaction and Irreversible reaction with example.
	4 th	Concepts of Chemical equilibrium, characteristic of chemical equilibrium.
15 th	1 st	Law of Mass action
	2 nd	Derivation of finding equilibrium constant
	3 rd	Le Chatelier's Principle.
	4 th	Application of laws of chemical equilibrium and Condition for maximum yield in industrial processes